6 июня 1928г - 12 февраля 2008г
Орловская область, Орловский район, Орёл
Российский физик-теоретик, известный своими работами в областях нелинейной динамики и динамического хаоса. Практически вся научная карьера Бориса Чирикова связана с расположенным в Новосибирском Академгородке Институтом ядерной физики им. Будкера РАН.
В 1952 году окончил Московский физико-технический институт. После окончания института начал работать под руководством Герша Будкера в Российском научном центре "Курчатовский Институт" АН СССР. В сентябре 1959 года Будкер переехал в Новосибирск, где основал Институт ядерной физики (впоследствии получивший его имя). Вместе со своим руководителем в Новосибирск переехал и Чириков. В 1983 году стал членом-корреспондентом АН СССР, а в 1992 году – действительным членом РАН. До своей смерти в 2008 году он продолжал работать в институте Будкера.
С именем Бориса Чирикова ассоциируется ряд ярких фундаментальных результатов по теории динамического хаоса и основ статистической механики. В 1959 году Чириков предложил критерий возникновения классического хаоса в гамильтоновых системах, сейчас известен как критерий Чирикова. В той же работе он применил свой критерий для объяснения только что полученных в Курчатовском институте загадочных экспериментальных результатов по конфайнменту плазмы в открытых зеркальных ловушках. Это была первая физическая теория хаоса, которая смогла объяснить конкретный эксперимент и была развита задолго до возможности компьютерного моделирования хаоса.
Еще одним важным открытием Бориса Чирикова является отражение, впоследствии получившее название стандартного отражения Чирикова, квантовый аналог которого широко используется для описания явления динамической локализации, наблюдаемого в экспериментах с атомами водорода и ридберговскими атомами в микроволновых полях и в бозе — эйнштейновских конденсатах на оптических решетках.
К другим результатам, полученным Чириковым вместе со своими сотрудниками, относятся следующие: анализ перехода из сильного хаоса в задаче Ферми-Паста-Улама; вывод границы хаоса для модели ускорения Ферми; численный расчет энтропии Колмогорова-Синая для отражений, сохраняющих площадь; исследование слабых неустойчивостей в многомерных гамильтоновых системах (диффузия Арнольда и модуляционная диффузия); демонстрация положительности энтропии Колмогорова-Синая для однородных моделей Янга-Миллса, а следовательно их неинтегровости; установление ступенчатого закона убывания возвратов Пуанкаре для гамильтоновых систем с разделенным фазовым пространством; демонстрация хаотичности динамики кометы Галлея.